Search results for "Density functional calculations"
showing 10 items of 56 documents
Towards Atomically Precise Supported Catalysts from Monolayer‐Protected Clusters: The Critical Role of the Support
2020
Abstract Controlling the size and uniformity of metal clusters with atomic precision is essential for fine‐tuning their catalytic properties, however for clusters deposited on supports, such control is challenging. Here, by combining X‐ray absorption spectroscopy and density functional theory calculations, it is shown that supports play a crucial role in the evolution of monolayer‐protected clusters into catalysts. Based on the acidic nature of the support, cluster‐support interactions lead either to fragmentation of the cluster into isolated Au–ligand species or ligand‐free metallic Au0 clusters. On Lewis acidic supports that bind metals strongly, the latter transformation occurs while pre…
Theoretical search for very short metal-actinide bonds: NUIr and isoelectronic systems.
2004
, respectively. These analogues provide anexample ofthe isolobal principle, now without any outsideligands onthePt atom,asituation describedasits “autogenicisolobality”. These systems have multiple C Pt bonds. Theisolobal principle of Hoffmann refers to the similar chemicalbehaviorofansphybridandametalatomwithligands,-ML
A Dehydrogenase Dual Hydrogen Abstraction Mechanism Promotes Estrogen Biosynthesis: Can We Expand the Functional Annotation of the Aromatase Enzyme?
2018
Cytochrome P450 (CYP450) enzymes are involved in the metabolism of exogenous compounds and in the synthesis of signaling molecules. Among the latter, human aromatase (HA) promotes estrogen biosynthesis, which is a key pharmacological target against breast cancers. After decades of debate, interest in gaining a comprehensive picture of HA catalysis has been renewed by the recent discovery that compound I (Cpd I) is the reactive species of the peculiar aromatization step. Herein, for the first time, a complete atomic-level picture of all controversial steps of estrogen biosynthesis is presented. By performing cumulative quantum-classical molecular dynamics and metadynamics simulations of abou…
Island Homoaromaticity in the W-Shaped 2,4-Diphospha-3-arsapentadienide Anion and Related Compounds - Theoretical and Experimental Investigations
2012
A series of anions with general formula (R2C=P)2Pn– (Pn = N, P, As, Sb; R = H, Me, CF3, SiH3, SiMe3, SiF3) was investigated theoretically at the DFT (RI-BP86/TZVP) and RI-MP2/TZVP levels of approximation. Significantly sharpened central PPnP bond angles were predicted for the species with π-acceptor R substituents. The corresponding bond angle values decrease in the order Pn = N >> P > As > Sb. This finding is in agreement with the previously published structural data for [(Me3Si)2C=P]2P–. An island homoaromaticity was proposed as a suitable explanation for the observed effect. In more detail, it consists of shifting negative charge to the electron-withdrawing terminal groups with formation…
Attachment of chloride anion to sugars: mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spec…
2012
International audience; A new method for efficient ionization of sugars in the negative-ion mode of electrospray mass spectrometry is presented. Instead of using strongly hydrophobic dopants such as dichloromethane or chloroform, efficient ionization of sugars has been achieved by using aqueous HCl solution for the first time. This methodology makes it possible to use hydrophilic dopants, which are more appropriate for chromatographic separation techniques with efficient sugar ionization and detection in mass spectrometry. The interaction between chloride anions and monosaccharides (glucose and galactose) was studied by DFT in the gas phase and by implementing the polarizable continuum mode…
DFT computational study on Fe(III)-N,N′-ethylene-bis(salicylideneiminato) derivatives
2005
DFT calculations, at unrestricted B3LYP level, have been performed on the structures of three iron(III) complexes, Fe(Salen)Cl, [Fe(Salen)]+ and [Fe(Salen)OH2]+, where Salen is the anion of Schiff base ligand N,N′-ethylene-bis (salicylideneimine), considering the spin multiplicity (S) values 2, 4 and 6. The results obtained have been compared with the available structural an magnetic experimental data, allowing us to conclude that a stable form of the FeIII(Salen) complex in aqueous solution should be characterized by an energy stabilization of the S=4 compared to the S=6 state.
Molecular Basis of the Chemiluminescence Mechanism of Luminol
2019
Light emission from luminol is probably one of the most popular chemiluminescence reactions due to its use in forensic science, and has recently displayed promising applications for the treatment of cancer in deep tissues. The mechanism is, however, very complex and distinct possibilities have been proposed. By efficiently combining DFT and CASPT2 methodologies, the chemiluminescence mechanism has been studied in three steps: 1)luminol oxygenation to generate the chemiluminophore, 2)a chemiexcitation step, and 3)generation of the light emitter. The findings demonstrate that the luminol double-deprotonated dianion activates molecular oxygen, diazaquinone is not formed, and the chemiluminopho…
Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations
2011
A family of dyes (L 1-L 6) that contain a thiazolylazo group as signalling subunit and several macrocyclic cavities with different ring sizes and type and number of heteroatoms as binding sites has been synthesized and characterized. Solutions of L 1-L 6 in acetonitrile show broad and structureless absorption bands in the 554-577 nm range with typicalmolar absorption coefficients that range from 20000 to 32000 M -1 cm -1. A detailed protonation study was carried out with solutions of L 1, L 2 and L 5 in acetonitrile. Addition of one equivalent of protons to L 1 and L 2 resulted in the development of a new band at 425 and 370 nm, respectively, which was ascribed to protonation in the aniline…
A Two-State Computational Investigation of Methane C-H and Ethane C-C Oxidative Addition to [CpM(PH3)]n+ (M=Co, Rh, Ir;n=0, 1)
2006
Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordinati…
Karplus-Type Dependence of Vicinal119Sn-13C and119Sn-1H Spin-Spin Couplings in Organotin(IV) Derivatives: A DFT Study
2009
The empirical Karplus-type dependence of (3)J((119)Sn,(13)C) and (3)J((119)Sn,(1)H) couplings in organotin(IV) derivatives has been computationally validated by DFT methods both at the nonrelativistic and scalar ZORA relativistic level. A preliminary calibration of the computational protocols, by comparing experimental and calculated couplings for a Set Of Suitable rigid molecules, revealed their high predictive power: in particular, relativistic results for (3)J((119)Sn,(13)C) have a mean absolute error of just above 2 Hz, over a range of values up to about 70 Hz. The latter protocol has then been used to study in detail the influence of substituents and multiple paths connecting the coupl…